Types of Triangles page 1 of 2

You can group triangles by the size of their angles.

You can also group triangles by the lengths of their sides.

1 Look carefully at the triangles below and fill in the chart.

	Triangle	Acute Right Angles? Angles?		Obtuse Angles?	Congruent Sides?	What Kind? (circle as many as apply)		
а						acute right obtuse	equilateral isosceles scalene	
b						acute right obtuse	equilateral isosceles scalene	

2 Circle the *right triangle* (one right angle) that is also an *isosceles triangle* (two sides the same length).

(continued on next page)

DATE

NAME

Types of Triangles page 2 of 2

3 Circle the *right triangle* (one right angle) that is also a *scalene triangle* (no sides the same length).

- **4** Draw the triangles described below.
 - **a** An obtuse isosceles triangle

••••	1	1	·	 	 	
				 	 	 -

5 CHALLENGE Lawrence said he drew a right obtuse triangle. Rosa said that was impossible. Explain why Rosa is correct.

Hint The sum of the angle measures in any triangle is 180°.

